Как на коэффициенты логистической регрессии повлияет тот факт, что два предиктора сильно коррелируют?
Когда два или более предикторов в модели логистической регрессии сильно коррелируют между собой, это явление называется мультиколлинеарностью. Наличие мультиколлинеарности может приводит к нескольким потенциальным проблемам:
▫️Нестабильность коэффициентов регрессии. Это означает, что небольшие изменения в данных могут привести к значительным изменениям в оценках. ▫️Коэффициенты становятся менее надёжными для интерпретации и предсказания.
Например, если обучить модель, используя сильно коррелированные признаки, не все знаки коэффициентов будут соответствовать бизнес-логике. Так, уменьшение значения признака «остаток долга / сумма выдачи» должно приводить к уменьшению вероятности дефолта. Но из-за мультиколлинеарности коэффициент сменил знак на противоположный, и признак стал говорить об обратном: чем меньше остаётся платить, тем больше вероятность дефолта.
Как на коэффициенты логистической регрессии повлияет тот факт, что два предиктора сильно коррелируют?
Когда два или более предикторов в модели логистической регрессии сильно коррелируют между собой, это явление называется мультиколлинеарностью. Наличие мультиколлинеарности может приводит к нескольким потенциальным проблемам:
▫️Нестабильность коэффициентов регрессии. Это означает, что небольшие изменения в данных могут привести к значительным изменениям в оценках. ▫️Коэффициенты становятся менее надёжными для интерпретации и предсказания.
Например, если обучить модель, используя сильно коррелированные признаки, не все знаки коэффициентов будут соответствовать бизнес-логике. Так, уменьшение значения признака «остаток долга / сумма выдачи» должно приводить к уменьшению вероятности дефолта. Но из-за мультиколлинеарности коэффициент сменил знак на противоположный, и признак стал говорить об обратном: чем меньше остаётся платить, тем больше вероятность дефолта.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.
At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?
Библиотека собеса по Data Science | вопросы с собеседований from tw